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OPTIMIZATION OF GENE SEQUENCES FOR
PROTEIN EXPRESSION

This invention was made with government support under
Grant Numbers CA202960 and GM 102706 awarded by the
National Institutes of Health. The government has certain
rights in the invention.

This application incorporates by reference the material in
the ASCII text file named “finalfiles_ ST25”, created Oct. 27,
2019, of size 7,915 bytes.

INTRODUCTION

Expression of a protein from one system (e.g., organism)
in a different system is crucial in applications ranging from
drug production to genetically modified food. We have
developed a novel method to design genes that are optimized
for protein expression in a given system.

A gene’s DNA sequence encodes a protein, and these
proteins are produced, or expressed, to carry out the func-
tions of the cell. Bioengineering can take advantage of the
cell as a protein production factory in order to produce
heterologous proteins not originally encoded by that cell’s
genome. As examples, the high demand for insulin for
diabetic patients is met by transferring the human insulin
gene to bacteria that can then produce insulin in bulk, and
genetically modified Bt corn expresses a protein from a
bacterium that confers insect resistance. However, a gene
from one organism is not always expressed properly in
another organism.

Each amino acid in a protein can be encoded by any of up
to six different codons, or three nucleotide DNA sequences,
and different organisms favor different codons to encode the
same protein. Use of non-preferred codons can slow down
the ribosome, the cellular machine that produces protein,
and prevent the cell from making protein. Thus, a ‘foreign’
gene sequence must often be modified to use the recipient
host’s preferred codons.

The challenge, then, is to identify the codon preferences
of an organism and to re-encode the protein of interest using
a preferred DNA sequence. To date, the methods to solve
this problem have relied on indirect measurements of codon
preference, such as frequency of a given codon in the host
organism’s genome.

Here, we take advantage of a method for measuring
translation directly, combined with machine learning analy-
sis, to learn the preferred codon sequences in an organism of
interest. We use these results to design and demonstrate an
optimized sequence encoding a protein of interest.

SUMMARY OF THE INVENTION

There is a large and growing market for better expression
of heterologous genes in commercial and medical applica-
tions. Our method is an improvement over existing methods,
and provides tailoring or optimizing gene sequences for
protein expression, with myriad applications, such as:

bulk production of proteins in microbial culture, such as

bacteria or yeast production of biologics drugs in
microbes or human cell culture

expression of ‘foreign’ genes in plants or animals for

genetically modified food production

expression of enzymes in plants or microbes for synthetic

biology production of compounds including biofuels
expression of molecular biology markers such as green
fluorescent protein in research organisms.
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The invention provides for design of genes for expression
in different human tissues for therapeutic use, and for design
of sequences for any intermediate level of expression (not
just highest or lowest) by generating random sequences and
choosing one with an appropriate score. Hence, the methods
are not limited to designing optimal sequences, but can
fine-tune the output.

In an aspect the invention provides a method for tailoring
or optimizing gene sequences for protein expression, com-
prising steps: (a) measure ribosome dynamics in the system
of interest (ribosome profiling); (b) train a statistical model
of the relationship between DNA sequence and translation
speed; and (c¢) use this model to design an optimal DNA
sequence encoding a given protein

In an aspect the invention provides a method for tailoring
gene sequences for protein expression, comprising steps: (a)
measuring ribosome dynamics in an organism or cell type of
interest to obtain ribosome profiling data; (b) training a
statistical model of the relationship between DNA sequence
and translation speed on the ribosome profiling data; and (c)
using the trained model to design a DNA sequence encoding
and tailored for expression of a protein of interest.

In embodiments:

step (a) comprises detecting RNA molecules bound ribo-
somes by ribosome profiling, which is deep sequencing of
ribosome-protected mRNA fragments, and comprises con-
tacting the RNA molecules with an enzymatic degradant or
a chemical degradant thereby forming RNA fragments,
wherein each RNA fragment comprises an RNA portion
protected from the enzymatic degradant or the chemical
degradant by a ribosome to which the RNA portion is bound;
amplifying the RNA fragments to form amplified nucleic
acid fragments; and detecting the amplified nucleic acid
fragments, thereby detecting the RNA molecules bound to
the ribosome;

the profiling data references ribosome E-P-A sites:

aminoacyl site (A), the peptidyl site (P) and the exit site
(E), and wherein step (b) comprises training the model to
learn sequence preferences for translation by using counts of
fragments at each position to learn the cell type or organ-
ism’s sequence preferences for fast translation, by:

counting how many ribosomes are seen at each codon
position in each gene, normalized by the average number of
ribosomes per position in that gene;

using a machine learning protocol to learn a model for the
position—normalized count relationship of the genome,
wherein a 30-40 nucleotide window is encoded around each
codon as a binary feature vector, and

training a neural network and/or least squares (OLS)
model to predict normalized counts as a function of these
features, providing a model that can take as input any
arbitrary gene sequence and predict how ribosomes will
slow down or speed up on that sequence;

step (b) comprises:

predicting counts at the A site codon, wherein a sequence
neighborhood spanning from 5 codons upstream of the A site
(codon -5) to 4 codons downstream of the A site (codon +4)
is used as the predictive region;

dividing the neighborhood into codons and encoded via
one-hot encoding for input into a regression model, and
encoding the same neighborhood as nucleotide features
included in the model;

computing RNA structure score on three 30 nt sliding
structure windows that span the width of a typical 28 nt
footprint, wherein the windows start 17, 16, and 15 nucleo-
tides before the start of the A site; and
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concatenating the features in a vector, and using the vector
as the input to a fully connected feed-forward neural net-
work model; and/or

step (¢) comprises using the model to design an optimized
codon sequence to encode a given protein sequence by using
a dynamic programming algorithm to determine an optimal
codon sequence in the set of synonymous sequences that
code for the protein.

In embodiments the methods further comprise synthesiz-
ing a DNA molecule of the DNA sequence.

The invention encompasses all combination of the par-
ticular embodiments recited herein, as if each combination
had been laboriously recited.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-E. Design and performance of a neural network
model of translation elongation. a, Each ribosome protects
an mRNA footprint of approximately 28-29 nt. Sequence
coordinates in a neighborhood around a ribosome are
indexed relative to the codon in the A site of the ribosome.
b, Read count rescaling. For each gene, the counts of
footprints assigned to each A site codon are divided by the
average counts per codon over that gene. The resulting
scaled footprint counts are used for model training and
prediction. ¢, Model performances (Pearson correlations
between predicted and true scaled counts over the test set)
for neural network and linear regression models over a range
of sequence neighborhoods, with and without nucleotide
features, as well as correlations for models that also incor-
porate structure scores of the three 30-nt windows overlap-
ping the footprint region, or the maximum structure score
within 59 nt downstream of the ribosome. Bars show the
mean of 10 runs of each model; the 10 individual runs for
each model are overlaid as gray points. d, True vs. predicted
scaled counts for the test set, under a model with codon and
nucleotide features spanning codon positions -5 to +4. Color
scale shows density of data points. e, True scaled counts
(gray bars) and predicted scaled counts (red line) for a highly
translated gene. Depicted sequences:

(SEQ ID NO.
AGCATTTCTTGCCAAGAAAGAGAGCTGCCTCCATCAGAGCCT
and

1)

(SEQ ID NO.
GCTAACTTGATGGCCGGTCACTGGGTTGCTATCTCC.

2)

FIGS. 2A-B. Performance comparisons on low coverage
genes and with competing models. a, Top, per-gene corre-
lations between true and predicted scaled counts, for all
4375 genes in our transcriptome that passed filtering criteria.
Training set genes in blue (333/top 500 genes by footprint
density). Loess curve on test set genes shown in red. Below,
as above, with footprint counts on the top 1000, 2000, 3000,
and 4000 genes subsampled to the density of footprint
counts on the 1000th, 2000th, 3000th, and 4000th gene,
respectively, and ‘true’ scaled counts recomputed. b, Com-
parison of Iynos with similar models, RUST'® and
riboshape'®. Shown are per-gene correlations between true
and predicted scaled counts, on 1711 genes passing the
filtering criteria from all three methods. Training set genes
from Iynos are excluded. Colored lines are loess curves,
which are also compared in the bottom panel.

FIGS. 3A-G. Interpretation of models of translation elon-
gation rates. a, Predictive value of codon positions in a yeast
ribosome profiling dataset®>. We computed Pearson corre-
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lations between true and predicted scaled counts on the test
set, for a reference model including codon and nucleotide
features from codon positions —7 to +5, and for a series of
leave-one-out models, each excluding one codon position.
Gray points show differences between Pearson’s r for 10
runs of each leave-one-out model and the mean r of 10 runs
of the reference model. Bars represent the mean of these
values. b, Mean contributions to scaled counts by codon
identity and position. ¢, P site codon contributions grouped
by the codon:anticodon base pair formed by the third
nucleotide of each codon. Asterisks indicate p<0.05 after
Bonferroni correction, unpaired two-sided Mann-Whitney
Utest between each group and all other codons. I:C,
p=0.014. d, Predictive value of codon positions as in A, from
a yeast ribosome profiling library we constructed using
CircLigase II as described by M°Glincy and Ingolia®®. e, f,
Contributions from (e) codon position -5, at the 5' ends of
footprints, and (f) the A site, in human ribosome profiling
data®® versus our yeast ribosome profiling data, both using
CircLigasell. Analysis was limited to 28-nt footprints to
avoid frame biases. g, Ligation efficiency of CircLigase II.
Oligonucleotide substrates resembling ribosome footprints
at the circularization step of the protocol, with different
three-nucleotide end sequences, were ligated by both
enzymes. Circularization was assayed by qPCR using prim-
ers spanning the ligation as compared to primers in a
contiguous region of the oligo. Ligation was calculated
relative to CircLigase I ligation of the best-ligated substrate.
Each point represents the ratio of the means of three qPCR
replicates; error bars represent the standard error of that
ratio.

FIGS. 4A-D. Design of synonymous sequences shows
elongation rate affects translation output, a, Six reporter
constructs with distinct synonymous eCitrine coding
sequences were inserted into the his3A1 locus of BY4742
yeast, and an equivalent construct with a constant mCherry
coding sequence was inserted into the his3Al locus of
BY4741 yeast. The haploids were mated to produce diploid
yeast with both reporters, whose fluorescence was then
measured with flow cytometry. b, The synonymous eCitrine
sequences included the fastest and slowest predicted
sequences under our model (magenta and red), plus
sequences with predicted translation elongation times at the
Oth, 33rd, 67th, and 100th percentiles of a randomly gener-
ated set of 100,000 synonymous eCitrine sequences (blue,
green, yellow, and orange, respectively). The score distri-
bution of 100,000 random eCitrine sequences is shown in
lavender. The scores of endogenous yeast genes, rescaled by
length to compare with eCitrine, are shown in gray. c,
eCitrine:mCherry fluorescence ratio, as measured by flow
cytometry of 11,000-18,000 yeast, versus the predicted
elongation time of each sequence. Each + symbol represents
the median ratio of yellow and red fluorescence from one
biological replicate of the given eCitrine strain. Eight bio-
logical replicates, each an independent integration of the
reporter construct, are included for each strain, except for
the strains shown in blue and orange, which have seven, and
the strain shown in green, which has three. Colors as in (b).
d, Translation efficiency, or median eCitrine:mCherry fluo-
rescence ratio divided by relative eCitrine:mCherry mRNA
ratio (ratio of medians of three qPCR replicates), for each
eCitrine variant, versus the predicted elongation time of
each sequence. Purple, yECitrine sequence; other colors as
in (b). Each point represents one biological replicate of the
given eCitrine strain; three biological replicates were mea-
sured for each strain except two for the strain shown in red.
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FIG. 5A-B. Neural network model structure. (A) Counts
are predicted at the A site codon. In the model shown, a
sequence neighborhood spanning from 5 codons upstream of
the A site (codon -5) to 4 codons downstream of the A site
(codon +4) is used as the predictive region. This neighbor-
hood is divided into codons and encoded via one-hot encod-
ing (purple) for input into a regression model. We also
encode the same region as nucleotide features (green) and
include these features in the model. Finally, we compute
RNA structure scores on three 30 nt sliding structure win-
dows that span the width of a typical 28 nt footprint. These
windows start 17, 16, and 15 nucleotides before the start of
the A site. (B) These features are concatenated in a vector,
which is used as the input to a fully connected feedforward
neural network model. Each model in this paper contains
one hidden layer with 200 hidden units, and a tanh activation
function on the hidden units. The output layer contains one
unit with a ReLu activation function to enforce nonnegativ-
ity of predicted scaled counts. Depicted sequence:

(SEQ ID NO. 3)

CACTTGAAGAGAAACTTTACGAATAACACTACGGAA

FIG. 6. Change in MSE upon including mRNA structure,
comparing the performance of a model using a sequence
neighborhood from codons -7 to +5 against models that
each also include the folding energy of a single 30 nt
window. Each point shows the change in MSE upon includ-
ing a particular window. The greatest improvement in MSE
is achieved by including a window starting at nucleotide
position -17 and ending at position 12. This is roughly
coterminal with a typical 28 nt ribosome footprint (nucleo-
tide positions —15 to +12).

FIGS. 7A-B. Relative contributions of A site codons and
context. (A) Pearson correlation of observed vs. predicted
scaled counts per codon, for a model using codons -3 to +2
and associated nucleotides (x-axis) and a model using the
same region but without the A site (y-axis). Codons whose
inclusion in the model leads to significantly better prediction
(higher correlation between the observed and predicted
scaled counts), per a t-test of the Fisher transformation of
correlations with an FDR of 5%, are shown in red. (B) We
extracted the sequence context (codons -3 to +2) for all
positions where the squared error was higher for an A-site-
only model than for a model with codons -3 to +2 but no A
site. The proportion of codons at each position in this set was
compared to the overall distribution of codons in the test set
with a two-sided proportion test, using an FDR of 5%, and
codons with adjusted p<0.05 are shown in the plot. Depicted
sequence:

(SEQ ID NO. 4)
TGCATGCTGCATCTGCATGCATGCATGCATGCATGCATGCATGCATGCAT

GCATGCATGCA.

FIGS. 8A-B. Predictive value of codon positions. Predic-
tive value of codon positions in (A) a human ribosome
profiling data set using Circligase 11 (Iwasaki, S. et al.,
Nature. 534(7608), 558-61, 2016), and (B) a yeast ribosome
profiling dataset using Circligase I (Schuller, A. et al., Mol.
Cell. 66, 194-205.e5, 2017). As in FIG. 3A, we trained a
reference model on codons -7 to +5 (with nucleotide fea-
tures over the same neighborhood), and then a series of
leave-one-out models each excluding exactly one codon in
the sequence neighborhood, along with the corresponding
nucleotides. For each model, we compute Pearson correla-
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tions between the true and predicted scaled counts over all
codons in the test set. Shown is the difference in Pearson
correlations between the reference model and the leave-one-
out models. Higher Ar indicates increased importance of that
codon position to model predictions.

FIGS. 9A-B. Circligase I and II preferences. (A) Mean
contributions to scaled counts at the 5' end of a ribosome
footprint, for yeast data sets generated with Circligase 11 (our
data) and Circligase 1 (Schuller, A. et al., Mol. Cell. 66,
194-205.e5, 2017). Scores are from the -5 codon position.
To generate these scores, we trained models only on 28 nt
footprints with their 5' end aligning with the beginning of the
-5 codon. (B) Ligation efficiency of CircLigase I enzyme, as
in FIG. 3G.

FIG. 10. Flow cytometry gating strategy. Scatter plot of
forward scatter area (FSC) against side scatter area (SSC,
arbitrary units) for each of the 50000 events collected for a
representative flow cytometry sample of diploid yeast
expressing mCherry and a differentially optimized eCitrine.
Events are colored by their density on the plot, low density
points being colored blue moving to high density events
being colored dark red. Events outside the plotted area are
denoted by grey lines at the edge of the plot. Annotated by
red regions are seven areas of high local density defined by
the curv2filter method, each with the number of events they
contain. For each sample, events within the most populous
region were taken forward for further analysis; in this
representative sample, these would be the events within
Area 3.

FIGS. 11A-B. yECitrine mRNA level and fluorescence.
(A) eCitrine:mCherry fluorescence ratio as in FIG. 3C,
including this ratio for the yECitrine sequence (magenta).
(B) eCitrine:mCherry mRNA ratio measured by qPCR in
biological replicates of four strains (colors as in FIG. 4).
Each data point represents the ratio of medians of three
technical replicates, normalized to the median ratio of the
highest expression strain.

DESCRIPTION OF PARTICULAR
EMBODIMENTS OF THE INVENTION

Unless contraindicated or noted otherwise, in these
descriptions and throughout this specification, the terms “a”
and “an” mean one or more, the term “or” means and/or.

It is understood that the examples and embodiments
described herein are for illustrative purposes only and that
various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
the appended claims. All publications, patents, and patent
applications cited herein, including citations therein, are
hereby incorporated by reference in their entirety for all
purposes.

Method Overview

A. Measure Translation in Organism of Interest

Translation of genes into protein is carried out by the
ribosome, a large and sophisticated cellular machine. The
ribosome decodes each 3-nt codon in the messenger RNA
(mRNA) and adds each specified amino acid to the new
protein chain. Ribosome profiling can measure translation
by capturing the positions of all ribosomes in a sample of
cells. Cellular mRNA is cleaved by enzymes, leaving only
the fragments of mRNA that are physically protected by
ribosomes. The ribosome-protected mRNA fragments,
which are 20-30 nucleotides long, are then sequenced using
an Illumina sequencer (or equivalent) and counted. The
number of fragments originating from each gene shows how
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much protein is being made from that gene. Further, the
distribution of fragments along the gene shows how quickly
or slowly the ribosome is moving at each position. Ribo-
somes spend more time sitting on slowly-translated codons,
and so fragments from those positions will be captured and
sequenced more frequently. Thus, the number of fragments
can show which sequences are translated more efficiently.

In our method, we first conduct a ribosome profiling
experiment in the organism or tissue of interest using
methods similar to those described by Ingolia et al, 2009.

B. Learn Sequence Preferences for Translation

We then use the counts of fragments at each position to
learn the organism’s sequence preferences for fast transla-
tion. We count how many ribosomes are seen at each codon
position in each gene, normalized by the average number of
ribosomes per position in that gene. We then use machine
learning methods to learn a model for the position—nor-
malized count relationship of the whole genome. We encode
a 30-40 nucleotide window around each codon as a binary
feature vector, and we train neural networks and ordinary
least squares (OLS) models to predict normalized counts as
a function of these features. The result is a model that can
take as input any arbitrary gene sequence and predict how
ribosomes will slow down or speed up on that sequence.

C. Predict the Best Codon Sequence to Encode a Given
Protein Sequence

Finally, we take that model and use it to design an
optimized sequence to encode a given protein. We use a
dynamic programming algorithm to find the optimal codon
sequence in the set of synonymous sequences that code for
the protein. To simplify in this example, we assume that our
model uses a 10 codon neighborhood as input features, and
each amino acid has four possible codons.

(1) Score all 1,048,576 possibilities for the first 10 codons
of a protein with a fixed amino acid sequence, c0 . . . ¢9, and
save these values as the cumulative score.

(i) Iterating over i in {1, 2, . . . length of sequence in
codons -10}

A. For each 9-codon suffix c(i) . . . ¢(i+8), store a pointer
to the best of the 4 possible choices for codon c(i-1),
and save the score of that c(i-1) . . . c(i+8) window.
Then generate each c(i) . . . ¢(i+9) sequence you get by
appending any possible choice for the next codon,
c(i+9), to our set of 9-codon suffixes c(i) . . . c(i+8), and
score those new 1,048,576 10-codon sequences. For
each new sequence c(i) . . . c(i+9), store a pointer to the
previous c(i-1) . . . c(i+8) sequence with the best
cumulative score. Add the score of the previous
sequence to the score of the current c(i) . . . c(i+9)
sequence.

(iii) After iteration we have a scoring table that is 1,048,
576xthe length of your protein, with each cell in a column
of the table containing a pointer back to the best sequence to
have come before the current position.

(iv) At the end, choose the best cumulative score at over
all sequences at the last position, and trace back to the first
position to reconstruct the optimal sequence.

To implement this method, one would conduct ribosome
profiling in an organism or cell type of interest, train the
translation speed model on the ribosome profiling data,
predict an optimized DNA codon sequence for the fixed
protein sequence of interest, then synthesize that DNA
sequence and introduce it into the organism.

The method has been reduced to practice, including using
translation data from yeast. We trained a single-layer feed-
forward neural network then implemented the optimization
method in python and predicted an optimized sequence for
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green fluorescent protein (GFP). GFP is a string of 238
amino acids encoded by a gene sequence of 714 nucleotides.
The protein begins with methionine-serine-lysine-glycine-
glutamate (MSKGE). In the organism from which natural
GFP was isolated, dequorea victoria, the first amino acids
are encoded as ATG-AGT-AAAGGA-GAA (SEQ ID NO.
5). But there are six possible codons for serine, two for
lysine, four for glycine, and two for glutamate, and our
method predict that the protein will be expressed more
efficiently in yeast if it is encoded with different serine and
glycine codons: ATG-TCC-AAA-GGT-GAA (SEQ ID NO.
6). We are synthesizing artificial gene sequences to encode
GFP with this optimized sequence in yeast, and we will
compare fluorescence levels between the natural and opti-
mized versions.

Our method has major strengths over existing methods
including:

It is empirical and based on direct measurements. Existing
methods rely on counting the frequency of each codon in a
genome, rather than looking at actual translation data, to
observe the supposed preferred codons. The codon count is
not actually an accurate measure of how efficiently that
codon is translated.

It considers more information than solely the 3-nucleotide
sequence being translated. By considering a window of =30
nucleotides around the site of translation, we incorporate
more information about how the ribosome interacts with its
substrate.

As aresult, our predicted optimized sequences differ from
published sequences that are widely used as ‘optimized’
sequences. The published sequence of GFP for expression in
yeast is different than the optimized sequence we describe
above, using different serine, glycine, and glutamate codons:
ATG-TCA-AAA-GGC-GAG (SEQ ID NO. 7).

(SEQ ID NO. 7)

ATG-TCA-AAA-GGC-GAG.

Another strength of our method is that it can capture
differences in translation in different conditions or in differ-
ent tissues within the same organism, by using ribosome
profiling data collected from the conditions or tissues that
are most relevant. Recent research has shown that codon
preferences vary between conditions even within the same
organism, based on changes to tRNA availability and other
factors.

At any given moment a ribosome is decoding one
3-nucleotide codon, which is positioned in the A site of the
ribosome. A tRNA comes into the A site, matches the codon,
and adds the correct amino acid.

Discussion

In our method we take empirical data from ribosome
profiling (U.S. Pat. No. 8,486,865), that measures the dwell
time of ribosomes on each position of each mRNA. We use
those measurement as machine learning input to determine
how a particular sequence determines how quickly ribo-
somes move, and then we use inferred rules to design
sequences for expression at high, low, or intermediate levels.
We established that a window of sequence near the codon
being decoded was a good predictor of ribosome speed and
that ribosome speed was a good predictor of protein output.
Our method does not need to know how the particular
biochemical features of that sequence cause the speed dif-
ferences. Instead, we form an empirical measure based on
data. Thus, our method can be used to learn the empirical
preferences in any particular setting, by doing a ribosome
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profiling experiment—translation conditions can be quite
different between different organisms, and in different cell
types.
Our method is innovative over related concepts. For
example, W02016112142, “Modeling ribosome dynamics
to optimize heterologous protein production”, employs a
conceptually different approach, starting with specific
sequence features that are expected to make a difference.
The features include the strength of interaction of the
ribosomal RNA with a region of mRNA sequence behind the
codon that is being translated and a model of how the force
of this interaction leads to partial ribosome displacement off
the A site codon. They use these, combined with existing
measurements of tRNA abundance, to make an explicit
model of ribosome dynamics, and then use that model to
design sequences for faster translation.
Our method, which learns relevant features in an unbiased
way, picks up features outside of the ones considered by
W02016112142. Their method does, in effect, use a window
of sequence near the A site, like our method, but it only
evaluates one aspect of this window (rRNA:mRNA pairing,
which, again, is not an idea that is widely accepted in
eukaryotes, and is under some debate in prokaryotes).
Because our method uses empirical measurements of
ribosome dwell time from ribosome profiling, we do not
need to rely on tRNA abundance measurements (which are
hard to obtain, and not available for many organisms/
conditions) nor limit ourselves to genome-wide codon pref-
erences as a proxy to tRNA abundance. Instead, we can learn
the sequence preferences from real data—our model will
inherently reflect tRNA abundance only to the extent that it
matters for translation. We do not need to know the actual
tRNA abundance, and we do not need to know how much it
matters.
Notably ours is the first method for designing sequences
that does not rely on some pre-existing measure of tRNA
abundance/tRNA  availability/codon  preference. And,
because those tRNA contributions aren’t well known, that
makes our method more accurate and more flexible.
Inventive aspects of our method include:
using an mRNA sequence window around a codon to
predict its translation, without requiring knowledge of
the specific biochemical properties responsible for the
effect (this does not depend on specific implementa-
tion—could be a neural network, linear regression, etc)

use of a neural network to learn the effect of a specific
mRNA sequence window on translation

use of a neural network to score/predict the translation of

any existing or novel sequence

specific method of optimizing a sequence for highest or

lowest translation using that

neural network score

randomly generating many sequences and scoring them to

design sequences for translation at specific intermedi-
ate levels

Example: Accurate Design of Translational Output by a
Neural Network Model of Ribosome Distribution

Synonymous codon choice can have dramatic effects on
ribosome speed and protein expression. Ribosome profiling
experiments have underscored that ribosomes do not move
uniformly along mRNAs. We modeled this variation in
translation elongation using a feedforward neural network to
predict the ribosome density at each codon as a function of
its sequence neighborhood. Our approach revealed sequence
features affecting translation elongation and characterized
large technical biases in ribosome profiling. We applied our
model to design synonymous variants of a fluorescent pro-
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tein spanning the range of translation speeds predicted with
our model. Levels of the fluorescent protein in budding yeast
closely tracked the predicted translation speeds across their
full range. We therefore demonstrate that our model captures
information determining translation dynamics in vivo, that
we can harness this information to design coding sequences,
and that control of translation elongation alone is sufficient
to produce large, quantitative differences in protein output.

Introduction

As the ribosome moves along a transcript, it encounters
diverse codons, tRNAs, and amino acids. This diversity
affects translation elongation and, ultimately, gene expres-
sion. For instance, exogenous gene expression can be seri-
ously hampered by a mismatch between the choice of
synonymous codons and the availability of tRNAs. The
consequences of endogenous variation in codon use have
been more elusive, but new methods have revealed that
synonymous coding mutations, upregulation of tRNAs, and
mutations within tRNAs can have dramatic effects on pro-
tein expression, folding, and stability’. Codon usage can
directly affect the speed of translation elongation®. However,
translation initiation has been considered the rate-limiting
step in translation, implying that changes in elongation
speed should have limited effects®. Recent work has sug-
gested a relationship between codon use and RNA stability;
slower translation may destabilize mRNAs and thus
decrease protein expression®’. These opposing viewpoints
have yet to be fully reconciled, leaving us with an incom-
plete understanding of what defines a favorable sequence for
translation.

With the advent of high-throughput methods to measure
translation elongation in vivo, we can understand the func-
tional implications of codon usage. Ribosome profiling
measures translation transcriptome-wide by capturing and
sequencing the regions of mRNA protected within ribo-
somes, called ribosome footprints®. Each footprint reflects
the position of an individual ribosome on a transcript, and
we can reliably infer the A site codon—the site of tRNA
decoding—in each footprint (FIG. 1a). This codon-level
resolution yields the distribution of ribosomes along
mRNAs from each gene. We can use the counts of footprints
on each codon to infer translation elongation rates: slowly
translated codons yield more footprints, and quickly trans-
lated codons yield fewer (FIG. 15). Analyses of ribosome
profiling data have shown a relationship between translation
elongation rate and biochemical features like tRNA abun-
dance, wobble base pairing, amino acid polarity, and mRNA
structure®'®, Expanded probabilistic and machine learning
models have shown that the sequence context of a ribosome
contributes to its elongation rate, both directly and
through higher order features such as nascent protein
sequence'>'”'?. Computational modeling has also indi-
cated that technical artifacts and biases contribute to the
distribution of ribosome footprints'®>'. However, it remains
a challenge to distinguish experimental artifacts from the
biological determinants of elongation rate. Here, we have
used neural networks to model ribosome distribution along
transcripts. The model captured both biological variation in
translation elongation speed and technical biases affecting
footprint count, which we confirmed experimentally. We
have implemented a tool, Iynos, that applies our model to
design coding sequences, and used this to design sequences
spanning a range of predicted translation elongation speeds.
We found that the predicted elongation speeds accurately
tracked protein expression, supporting a role for the elon-
gation phase of translation in modulating gene expression.
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Design and Performance of a Neural Network Model of
Translation Elongation

First, we developed a regression framework to model the
distribution of ribosomes along transcripts as a function of
local sequence features. As our measure of ribosome density
on individual codon positions, we calculated scaled footprint
counts by dividing the raw footprint count at each codon
position by the average footprint count on its transcript (FIG.
15). This normalization controls for variable mRNA abun-
dances and translation initiation rates across transcripts. The
scaled count thus reflects the relative speed of translation
elongation at each position. We used a sequence neighbor-
hood around the A site as the predictive region for scaled
counts, and encoded this neighborhood as input to a regres-
sion model via one-hot encoding of the codons and nucleo-
tides in this region (FIG. 5). Then we learned a regression
function with a feedforward neural network, trained on a
large, high quality ribosome profiling data set from Saccha-
romyces cerevisiae®. We chose the top 500 genes by foot-
print density and coverage criteria, and sorted these into
training and test sets of 333 and 167 genes, respectively.

We determined the sequence neighborhood that best pre-
dicted ribosome density by comparing a series of models
ranging from an A-site-only model to a model spanning
codon positions -7 to +5 (FIG. 1¢). The identity of the A site
codon was an important, but limited, predictor of the dis-
tribution of ribosome footprints (Pearson’s r=0.28). Expand-
ing the sequence context around the A site steadily improved
the predictive performance, up to the full span of a ribosome
footprint (codons -5 to +4). Additional sequence context
beyond the boundaries of the ribosome did not improve
performance. We also observed a large boost in predictive
performance by including redundant nucleotide features in
addition to codon features over the same sequence neigh-
borhood, especially near the ends of the ribosome footprint
(FIG. 1¢, r=0.53 for -5 to +4 model including nucleotide
features, Ar=0.08 relative to no-nucleotide model). Linear
regression models that only included codon features per-
formed similarly to the neural networks we tested, but they
did not improve with the inclusion of nucleotide features.
This indicates that the neural network models learn a mean-
ingful and nonlinear predictive relationship in nucleotide
features, particularly toward the flanking ends of footprints,
that makes them more successful than linear models.

Next we assessed the contribution of local mRNA struc-
ture to footprint distributions. We computed mRNA folding
energies in sliding 30 nt windows over all transcripts, and
trained a series of models that each included one window
from nucleotide positions —45 to +72 relative to the A site.
Performance improved upon including structure scores at
nucleotide positions -17, -16, and -15, i.e., the windows
that span the actual ribosome footprint (Ar=0.03; FIG. 1c¢
and FIG. 6). No individual windows downstream of the
footprint improved our predictions, and the maximum struc-
ture score over 30 sliding windows downstream of the
ribosome had only a slight effect (Ar<0.01) (FIG. 1c¢). Thus,
our approach does not capture a conclusive effect of down-
stream mRNA structure on elongation rate. We were sur-
prised to see an effect of structure within the ribosome, so we
tested the direction of the effect and found that more
structure in these windows led to lower predicted footprint
counts. This indicates that stable mRNA structure in the
footprint fragments themselves is inhibiting their in vitro
recovery in ribosome profiling experiments, and our model
is capturing the bias that this introduces to the data.

Our best model incorporated a sequence window from
codons -5 to +4 represented as both codons and nucleotides,
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as well as structure features of the three windows spanning
the footprint. It captured sufficient information to accurately
predict footprint distributions on individual genes (FIG. 1e),
and yielded a correlation of 0.57 (Pearson’s r) between
predicted and true scaled counts over all positions in the test
set (FIG. 1d). Although our model performed well across a
range of scaled counts, it had difficulty predicting very high
scaled footprint counts at a small number of sites. These sites
may represent ribosome stalling that is determined by bio-
logical factors encoded outside of this local sequence neigh-
borhood'®.

Our model was trained on highly expressed genes because
abundant ribosome footprints enable more accurate sam-
pling of ribosome positions. However, highly expressed
genes can have biased codon usage®*. To ensure that our
model was accurately predicting translation on genes across
the full range of expression and codon usage, we computed
the correlation between the observed and predicted scaled
counts for all yeast genes. Performance decreased with
lower expression (FIG. 2a), but we hypothesized that the
decreased performance reflected noisier observed footprint
counts arising from less-abundant mRNAs, rather than dif-
ferences in their codon composition. To test this, we down-
sampled the footprints for each of the 1000 highest-expres-
sion genes to match the average counts per codon of the
1000th gene, and repeated this procedure for the top 2000,
3000, and 4000 genes. We then compared the predictions of
our model, which had been trained on the full data from
highly expressed genes, against the downsampled data. At
each coverage level, our method performed equally well on
high-expression genes and low-expression genes. Thus, our
model had no decrease in performance on genes that tend to
have less favored codon content, after controlling for data
density.

We also compared the performance of our model against
two earlier approaches that incorporate information from the
sequence neighborhood of each codon to predict ribosome
distributions: RUST, which computes the expected ribosome
density at each codon based on its sequence window'®, and
riboshape, which uses wavelet decomposition to denoise the
observed counts by projecting them into different subspaces
at different levels of resolution (smoothness), and then
predicts ribosome density after transformation into these
subspaces'®. To compare riboshape to our own method and
to RUST, we evaluated how well its predictions in the
highest resolution subspace (i.e., closest to the raw data)
correlated with the observed footprint counts. Our model
out-performed both models, with an average Pearson cor-
relation per gene of 0.56 versus 0.48 (RUST) and 0.41
(riboshape) across all genes that were included in all three
analyses (FIG. 256). We also found that our predictions of the
raw data were better than riboshape’s predictions of the
transformed data at each resolution (Supplementary Table
1).

Sequences Near the a Site and at the Ends of Footprints
Contribute to Footprint Density

To quantify the influence of distinct positions in the
sequence neighborhood on elongation rate, we trained a
series of leave-one-out models that excluded individual
codon positions from the input sequence neighborhood, and
compared their performance to a reference model that
included all positions. We found that the A site codon
contributed the most to predictive performance (Ar=0.13),
but we also saw contributions from the surrounding
sequence context, including the P and E sites (Ar=0.03 and
0.03) (FIG. 3a). Each codon position from -5 to +4, the span
of a typical 28 nt ribosome footprint, improved performance
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of the full model, whereas positions outside the span of a
footprint decreased performance. Contributions from the E
and P sites suggest that the continued presence of tRNAs at
these positions modulates elongation rate. In contrast, the
large contribution of the +3 codon (Ar=0.06), at the 3' end of
the footprint, likely reflects artifactual biases arising from
the ribosome profiling process, corroborating previous
reports of fragment end biases'®>*°.

We were also interested in understanding the relative
influence of the A site codon and its immediate environment.
Overall, the A site codon and its immediate environment
predict ribosome density similarly well (Pearson’s r=0.28
for the A site only, r=0.26 for the codons from -3 to +2
excluding the A site). To identify A-site codons that tend to
dominate the prediction, contributing relatively more than
their context, we compared the performance of a -3:+2
model and a model with codons -3 to +2 but excluding the
Asite (FIG. 7). We found that the presence of lysine codons
AAA and AAG in the A site led to the strongest predictions,
in agreement with a major effect of charged lysine residues
on translation'!. Conversely, we also identified a number of
sequence contexts that tended to dominate the prediction, by
looking at the sequence contexts of the positions with higher
squared error arising from the A-site-only prediction at that
position than the no-A-site context (FIG. 7).

Next, we examined what our model had learned about the
relationship between sequence and ribosome density. The
raw parameters of a neural network can be difficult to
interpret, so we determined a score for each codon at each
position by computing the mean increase in predicted scaled
counts due to that codon (FIG. 35). Time spent finding the
correct tRNA is considered to be a main driver of elongation
speed, and consequently footprint counts®*. Indeed, the A
site codon scores exhibited the widest range of codon scores,
and scores at this position but not other positions correlated
with tRNA Adaptation Index (tAl), a measure of tRNA
availability®>, as has been widely observed (Pearson’s
r=0.50; p=0.0005 after Bonferroni correction). Our results
highlighted the well-characterized slow translation of CCG
(Pro), CGA (Arg), and CGG (Arg) codons at the A siteS.
Our data also underscore that sequences in the P site
contribute to elongation speed. The CGA codon showed a
particularly strong inhibitory effect in the P site, in keeping
with recent results®>®>”. We noted that this codon forms a
disfavored I: A wobble pair with its cognate tRNA, distorting
the anticodon loop®, while the four fastest P site codons all
form I:C wobble pairs (FIG. 3¢). Overall, I:C base pairs in
the P site contributed to faster translation (Mann-Whitney
p=0.014 after Bonferroni correction, FIG. 3¢). From this, we
concluded that the conformation of the tRNA:mRNA duplex
can influence its passage through the ribosome, not just
initial recognition in the A site.

We also observed strong sequence preferences at the 3'
end of ribosome footprints. Sequence bias has previously
been noted in the 5' and 3' ends of ribosome footprints, and
this bias has been suggested to arise from ligase preferences
during library preparation’®-*°. To compare features of ribo-
some profiling data generated in different experiments, we
applied our model to a large ribosome profiling dataset that
we generated from yeast using a standard ribosome profiling
protocol®. Models trained on these data learned disconcert-
ingly high weights for both the -5 and +3 codon positions
(FIG. 3d). The -5 codon, i.e., the 5' end of a footprint, was
the single strongest predictor of footprint counts, exceeding
even the A site. We found similarly large 5' end contributions
in published yeast and human datasets generated using
similar protocols®*>! (FIG. 8). These experiments, like our
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own, made use of CircLigase enzymes to circularize ribo-
some footprints after reverse transcription. In contrast, the
experiment we first modeled used T4 RNA ligase to attach
5" linkers directly onto ribosome footprint fragments®2. To
compare end sequence preferences between experiments, we
trained models on only 28-nt footprints so that the ends of
the footprints corresponded to the -5 codon position. Com-
paring the T4 ligase yeast data with CircLigase yeast data>*,
we observed no relationship between the scores learned at 5'
footprint ends (r=0.05), but a high correlation between
scores at the A site, where we would expect biological
similarity (r=0.86). In contrast, we observed a high corre-
lation at the -5 position between our CircLigase yeast data
and the CircLigase-generated human data set®° (r=0.83, FIG.
3e), but no significant relationship at the A site, where we
would expect species-specific codon bias (r=-0.21, p=0.11,
FIG. 3f). This suggested that the fragment end scores
reflected experimental artifacts rather than in vivo biology.

To directly test the impact of enzyme biases on recovery
of ribosome-protected fragments, we experimentally mea-
sured the ligation of synthetic oligonucleotides with end
sequences shown to be favored or disfavored in our model.
The relative ligation efficiency of each substrate closely
mirrored the end sequence scores learned by our model for
both CircLigase I and CircLigase II (FIG. 3g and FIG. 9).
The least-favored sequences were ligated by CircLigase 11
with only 20% the efficiency of the most-favored sequences,
meaning that some ribosome footprints would be repre-
sented at five times the frequency of other footprints for
purely technical reasons. This biased recovery of fragments
could skew the results of ribosome profiling experiments,
affecting estimates of elongation and overall per-gene trans-
lation.

Expression of Synonymous Reporters Closely Tracks
Predicted Translation Speeds

Our model captured the quantitative preferences of ligases
for footprint end sequences and established that a substantial
portion of the predictive information of these end regions is
due to technical artifacts. However, the biologically sensible
weights learned for codons in the A site showed that the
model captured substantial biology as well. We reasoned
that, if our model were capturing biological aspects of
translation elongation, we could use the parameters learned
by the model to design sequences that would be translated at
different rates. We relied on the information found in the
codons closer to the A site, to focus on the biological
contributions and reduce the influence of biases from the
ends of footprints (discussed further in Supplementary Note
1).

To test our model’s ability to predict translation, we
expressed synonymous variants of the yellow fluorescent
protein eCitrine in yeast (FIG. 4a). First, using the yeast
ribosome profiling data from Weinberg et al., we trained a
neural network model with a sequence neighborhood
extending from codon positions -3 to +2. Next, we designed
a dynamic programming algorithm to compute the maxi-
mum- and minimum-translation-time synonymous versions
of eCitrine based on our model. We defined the overall
translation time (in arbitrary units) of a gene as the sum of
predicted scaled counts over all codons in the gene. We also
generated and scored a set of 100,000 random synonymous
eCitrine CDSs and selected the sequences at the Oth, 33rd,
67th, and 99th percentiles of predicted translation time
within that set (FIG. 4b). We used flow cytometry to measure
the fluorescence of diploid yeast, each containing an eCi-
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trine variant along with the red fluorescent protein mCherry
as a control, and calculated relative fluorescence of each
variant (FIG. 4¢, FIG. 10).

The expression of eCitrine in each yeast strain closely
tracked its predicted elongation rate, with the predicted
fastest sequence producing six-fold higher fluorescence than
the predicted slowest sequence (FIG. 4c¢). However, the
existing yeast-optimized yECitrine sequence®® produced
three-fold higher fluorescence than our predicted fastest
sequence (FIG. 11). To understand the source of this dis-
crepancy, we measured eCitrine mRNA from all strains and
found that sequences designed by our method had approxi-
mately equivalent mRNA levels, while yECitrine had five-
fold more mRNA (FIG. 11). Calculating translation efficien-
cies, or protein produced per mRNA, reconciled this
disagreement. We observed a clear linear relationship
between predicted elongation rate and translation efficiency
(FIG. 4d)

Discussion

These experiments demonstrate that our model is able to
predict large, quantitative differences in protein production,
based only on information about translation elongation. The
sequences we designed and tested have predicted translation
speeds that span the range of natural yeast genes (FIG. 45).
This supports an effect of elongation rate on the translation
efficiency and protein output of endogenous genes. Initiation
rather than elongation is usually thought to be rate limiting
for protein production of most endogenous genesu®*. Mod-
els have suggested that highly expressed trans-genes might
deplete the effective supply of ribosomes, lowering initiation
and thus causing elongation to be rate-limiting, but our
reporter is expressed at the level of many endogenous genes
and should represent well under 1% of mRNA. Although
codon choice can also affect mRNA stability and thus total
protein output®’, our fast and slow predicted sequences have
equivalent steady-state mRNA. Further, an effect arising
purely from mRNA stability would affect protein output but
not translation efficiency, counter to our observations.
Instead, our results indicate that optimized elongation rates
do result in more protein per mRNA, and this does not
depend entirely on mRNA stability. Our approach can cap-
ture empirical information about codon preferences in any
system where translation can be measured by ribosome
profiling, and apply it to design sequences for quantitative
expression in that system.

Data Availability

Ribosome profiling sequence data generated for this study
have been deposited in NCBI GEO as accession
GSE106572. All Iynos software and analysis scripts, includ-
ing a complete workflow of analyses in this paper and all
analyzed data used to create figures, can be found at https://
github.com/lareaulab/iXnos.

Ribosome Profiling

Yeast ribosome profiling was performed exactly accord-
ing to M“Glincy & Ingolia®® with the following modifica-
tions:

250 mL of YEPD media was inoculated from an overnight
culture of BY474 to an OD600 of 0.1. Yeast were grown to
mid-log phase and harvested at an OD600 of 0.565. Lysis
proceeded according to M°Glincy & Ingolia® except with
no cycloheximide in the lysis buffer (20 mM Tris pH 7.4,
150 mM NaCl, 5 mM MgCl12, 1 mM DTT, 1% v/v Triton
X-1000, 25 U/ml Turbo DNase I). To quantify RNA content
of the lysate, total RNA was purified from 200 pL of lysate
using the Direct-zol RNA MiniPrep kit (Zymo Research)
and the concentration of RNA was measured with a Nano-
Drop 2000 spectrophotometer (ThermoFisher).
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Lysate containing 30 pg of total RNA was thawed on ice
and diluted to 200 g+l with polysome buffer with no
cycloheximide (20 mM Tris pH 7.4, 150 mM NaCl, 5 mM
MgCl12, 1 mM DTT). 0.1 ul (1 U) of RNase I (Epicentre) was
added to the diluted cell lysate and then incubated at room
temperature for 45 minutes. Digestion and monosome iso-
lation proceeded according to M°Glincy & Ingolia®, except
with no cycloheximide in the sucrose cushion.

Purified RNA was separated on a 15% TBE/Urea gel, and
fragments of 18-34 nt were gel extracted. Size was deter-
mined relative to RNA size markers NI-NI-800 and NI-NI-
801%° and NEB microRNA size marker (New England
Biolabs). Library preparation proceeded according to
MCGlincy & Ingolia®®. The library was made with down-
stream linker NI-NI-811 (/5Phos/NNNNNAGCTAA-
GATCGGAAGAGCACACGTCTGAA/3ddC/) (SEQ ID
NO. 8) and a modified RT primer with a preferred CircLi-
gase Il substrate (AG) at the 5' end (oLFL0O75, 5'-/5Phos/
AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/
GTGACTGGAGTTCAGACGTGTGCTC) (SEQ ID NO.
9). Library amplification PCR used primers NI-NI-798 and
NI-NI-825 (Illumina index ACAGTG). The resulting library
was sequenced as single-end 51 nt reads on an Illumina
HiSeq4000 according to the manufacturer’s protocol by the
Vincent J. Coates Genomics Sequencing Laboratory at the
University of California, Berkeley.

Sequencing Data Processing and Mapping

A custom yeast transcriptome file was generated based on
all chromosomal ORF coding sequences in orf_coding.fasta
from the Saccharomyces Genome Database genome anno-
tation R64-2-1 for reference genome version R64-1-1
(UCSC sacCer3) for Saccharomyces cerevisiae strain
S288C. A human transcriptome file was generated from
GRCh38.p2, Gencode v. 22, to include one transcript per
gene based on the ENSEMBL ‘canonical transcript’ tag. For
both human and yeast, the transcriptome file included 13 nt
of 5" UTR sequence and 10 nt of 3' UTR sequence to
accommodate footprint reads from ribosomes at the first and
last codons. For yeast transcripts with no annotated UTR,
the flanking genomic sequence was included. For human
transcripts with no annotated UTR, or UTRs shorter than 13
or 10 nt, the sequence was padded with N.

Yeast ribosome profiling reads from Weinberg et a
(SRR 1049521) were trimmed to remove the ligated 3' linker
(TCGTATGCCGTCTTCTGCTTG (SEQ ID NO. 10) off of
any read that ended with any prefix of that string, and to
remove 8 random nucleotides at the 5' end (added as part of
the 5' linker). Yeast ribosome profiling reads generated in
our own experiments (GEO accession GSE106572) were
trimmed to remove the ligated 3' linker, which included 5
random nucleotides and a 5-nt index of AGCTA (NNNN-
NIHITAGATCGGAAGAGCACACGTCTGAAC) (SEQ ID
NO. 11). Human ribosome profiling reads from Iwasaki et
al.*° (SRR2075925, SRR2075926) were trimmed to remove
the ligated 3' linker (CTGTAGGCACCATCAAT) (SEQ ID
NO. 12). Yeast ribosome profiling reads from Schuller et
al.** (SRR5008134, SRR5008135) were trimmed to remove
the ligated 3' linker (CTGTAGGCACCATCAAT) (SEQ ID
NO. 13).

Trimmed fastq sequences of longer than 10 nt were
aligned to yeast or human ribosomal and noncoding RNA
sequences using bowtie v. 1.2.1.1%°, with options “bowtie -v
2-S”. Reads that did not match rRNA or ncRNA were
mapped to the transcriptome with options “bowtie -a --norc
-v 2-S”. Mapping weights for multimapping reads were
computed using RSEM v. 1.2.31°°.

1‘22
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Assignment of a Sites

A site codons were identified in each footprint using
simple rules for the offset of the A site from the 5' end of the
footprint. These rules were based on the length of the
footprint and the frame of the 5' terminal nucleotide. For
each data set, the set of lengths that included appreciable
footprint counts was determined (e.g. Weinberg 27-31 nt.).
For each length, the counts of footprints mapping to each
frame were computed. The canonical 28 nucleotide footprint
starts coherently in frame 0, with the 5' end 15 nt upstream
of the A site (citation). For all other lengths, rules were
defined if footprints mapped primarily to 1 or 2 frames, and
offsets were chosen to be consistent with over digestion or
under digestion relative to a 28 nucleotide footprint. Foot-
prints mapping to other frames were discarded.

Scaled Counts

For each codon, the raw footprint counts were computed
by summing the RSEM mapping weights of each footprint
with its A site at that codon. Scaled footprint counts were
computed by dividing the raw counts at each codon by the
average raw counts over all codons in its transcript. This
controlled for variable initiation rates and copy numbers
across transcripts. The resulting scaled counts are mean
centered at 1, with scaled counts higher than 1 indicating
slower than average translation. The first 20 and last 20
codons in each gene were excluded from all computations
and data sets, to avoid the atypical footprint counts observed
at the beginning and end of genes.

Genes were excluded from analysis if they had fewer than
200 raw footprint counts in the truncated CDS, or fewer than
100 codons with mapped footprints in this region. Then the
top 500 genes were selected by footprint density (average
footprint counts/codon). %4 of these genes were selected at
random as the training set, and the remaining %5 of genes
were used as the test set.

Input Features

The model accepts user defined sets of codon and nucleo-
tide positions around the A site to encode as input features
for predicting ribosome density. The A site is indexed as the
Oth codon, and its first nucleotide is indexed as the Oth
nucleotide, with negative indices in the 5' direction, and
positive indices in the 3' direction. Each codon and nucleo-
tide feature is converted to a binary vector via one-hot
encoding, and these vectors are concatenated as input into
the regression models. The model also accepts RNA folding
energies from the RNAfold package, and allows the user to
define window sizes and positions to score RNA structure
and include as inputs into the regression models. In our
best-performing model, codons -5 to +4 and nucleotides
-15 to +14 were chosen, as well as folding energies from
three 30-nt windows starting at nucleotides —17, -16, and
-15.

Model Construction

All models were constructed as feedforward artificial
neural networks, using the Python packages Lasagne v.
0.2.dev1?” and Theano v. 0.9.0°®. Each network contained
one fully connected hidden layer of 200 units with a tanh
activation function, and an output layer of one unit with a
ReLU activation function. Models were trained using mini-
batch stochastic gradient descent with Nesterov momentum
(batch size 500).

Comparisons to Other Models

RUST'® was run via https://ribogalaxy.ucc.ie/ according
to the authors’ instructions. First, we computed a codon
metafootprint on the Weinberg dataset, aligned to the tran-
scriptome as described above. We used an A-site offset of 15
and limited the analysis to 28-nt footprints (the most abun-

15

20

25

30

35

40

45

50

55

60

65

18

dant), in keeping with the authors’ analysis. Then, we ran the
“similarity of observed and expected profiles” analysis using
that codon metafootprint and retrieved the correlation of the
observed and expected footprint distribution for each indi-
vidual gene.

Riboshape'® was downloaded from https://sourcefor-
ge.net/projects/riboshape/ on Feb. 2, 2018. We generated the
riboshape data structure according to the README file,
with custom scripts (process_data.py and make_data_struc-
ture.m, available on GitHub), on our processed footprint
counts data from the Weinberg dataset. We restricted the
analysis to the 2170 genes present in both our transcriptome
and the chxdata.mat data structure that is shipped with
riboshape. We binned our genes by truncated lengths 100-
210, 211-460, 461-710, 711-960, and 961-4871, which
matched the bins in Liu and Song after accounting for our 20
codon truncation regions at either end of genes. Then we
trained riboshape models on these bins, using a parameters
of 1,3, 5,12.5,25,37.5, 50, and 75. We report the per gene
correlations between the true footprint data and their regres-
sion fits (waveforms) in their wavelet decomposition sub-
space with the least amount of denoising. The values in this
subspace are closest to the observed footprint data, and their
model trained for this subspace performs the best at pre-
dicting observed footprint density. We also report for each
subspace the correlation between their denoised footprint
data and the regression fits in that subspace. The prior is
more directly comparable to our work.

Feature Importance Measurements

A series of leave-one-out models was trained, excluding
one codon position at a time from the sequence neighbor-
hood. The importance of each codon position to predictive
performance was computed as the difference in MSE
between the reduced and full models.

The contribution of codon ¢ at position i to predicted
scaled counts was calculated as the average increase in
predicted scaled counts due to having that codon at that
position, over all instances where codon ¢ was observed at
position 1 in the test set. This increase was computed relative
to the expected predicted scaled counts when the codon at
position i was varied according to its empirical frequency in
the test set (Supplementary Note 2).

Sequence Optimization

The overall translation time of a coding sequence was
computed as the sum of the predicted scaled counts over all
codons in that coding sequence. This quantity corresponds to
total translation time in arbitrary units. A dynamic program-
ming algorithm was developed to find the fastest and slowest
translated coding sequences in the set of synonymous coding
sequences for a given protein, under a predictive model of
scaled counts (Supplementary Note 3). This algorithm runs
in O(CM® time, where C is the length of the coding
sequence in codons, M is the maximum multiplicity of
synonymous codons (i.e. 6), and L is the length in codons of
the predictive model’s sequence neighborhood. This
achieves considerable efficiency over the naive O(CF)
model, by assuming that only codons within the sequence
neighborhood influence scaled counts.

This algorithm was used to determine the fastest and
slowest translating coding sequences for eCitrine, under a
predictive model using a sequence window from codons -3
to +2, and using no structure features. Then 100,000 syn-
onymous coding sequences for eCitrine were generated by
selecting a synonymous codon uniformly at random for each
amino acid. These coding sequences were scored, and the
sequences at the Oth, 33rd, 67th, and 100th percentiles were
selected for expression experiments.
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Measuring Circularization Efficiency

We designed oligonucleotides that mimic the structure of
the single-stranded cDNA molecule that is circularized by
CircLigase during the M°Glincy & Ingolia (2017) ribosome
profiling protocol. These oligonucleotides have the struc-
ture:

(SEQ ID NO. 14)
/5Phos /AGATCGGAAGAGCGTCGTGTAGGGARAGAG/ 1Sp18/GTGACT

GGAGTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCT
GTTATCCCTAAJJIJ,

where /5Phos/ indicates a 5' phosphorylation; /iSP18/
indicates an 18-atom hexa-ethyleneglycol spacer; and JJJ
indicates the reverse complement of the nucleotides at the 5'
of the footprint favored or disfavored under the model
(oligos defined in Supplementary Table a). Circularization
reactions were performed using CircLigase I or I (Epicen-
tre) as described in the manufacturer’s instructions, using 1
pmol oligonucleotide in each reaction. Circularization reac-
tions were diluted 1/20 before being subjected to qPCR
using DyNAmo HS SYBR Green qPCR Kit (Thermo Sci-
entific) on a CFX96 Touch Real Time PCR Detection
System (Biorad). For each circularization reaction, two
qPCR reactions were performed: one where the formation of
a product was dependent upon oligo circularization, and one
where it was not. qPCR data was analyzed using custom R
scripts whose core functionality is based on the packages
qpeR?*® & dpcR* (gper_functions.R, available on github).
The signal from the circularization dependent amplicon was
normalized to that from the circularization independent
amplicon, and then expressed as a fold-change compared to
the mean of the oligonucleotide with the most favored
sequence under the model.

Plasmid and Yeast Strain Construction

Yeast integrating plasmids expressing either mCherry or a
differentially optimized version of eCitrine were con-
structed. The differentially optimized versions of eCitrine
were synthesized as gBlocks by Integrated DNA Technolo-
gies inserted into the plasmid backbone by Gibson assem-
bly*. Transcription of both mCherry and eCitrine is directed
by a PGK1 promoter and an ADHI1 terminator. To enable
yeast transformants to grow in the absence of leucine, the
plasmids contain the LEU2 expression cassette from
Kluyveromyces lactis taken from pUG73*?, which was
obtained from EUROSCAREF. To enable integration into the
yeast genome, the plasmids contain two 300 bp sequences
from the his3A1 locus of BY4742. To construct yeast strains
expressing these plasmids, the plasmids were linearized at
the Sbfl site and -1 pg linearized plasmid was used to
transform yeast by the high efficiency lithium acetate/single-
stranded carrier DNA/PEG method, as described®. Trans-
formants were selected by growth on SCD-LEU plates, and
plasmid integration into the genome was confirmed by yeast
colony PCR with primers flanking both the upstream and
downstream junctions between the plasmid sequence and the
genome. PCR was performed using GoTaq DNA poly-
merase (Promega M8295). Haploid BY4742 and BY4741
strains expressing the eCitrine variants and mCherry, respec-
tively, were then mated. For each eCitrine variant, eight
transformants were mated to a single mCherry transformant.
Diploids were isolated by their ability to grow on SCD-
MET-LYS plates. Strains with sequence-confirmed muta-
tions or copy number variation were excluded from further
analysis.
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Assessing Fluorescent Protein Expression by Flow
Cytometry

Overnight cultures of diploid yeast in YEPD were diluted
in YEPD so that their optical density at 600 nm (OD ) was
equal to 0.1 in a 1 mL culture, and then grown for six hours
in a 2 mL deep-well plate supplemented with a sterile glass
bead, at 30° C. with shaking at 250 rpm. This culture was
pelleted by five minutes centrifugation at 3000xg and fixed
by resuspension in 16% paraformaldehyde followed by 30
minutes incubation in the dark at room temperature. Cells
were washed twice in DPBS (Gibco 14190-44) and stored in
DPBS at 4° C. until analysis. Upon analysis, cells were
diluted ca. 1:4 in DPBS and subject to flow cytometry
measurements on a BD Biosciences (San Jose, Calif.) LSR
Fortessa X20 analyzer. Forward Light Scatter measurements
(FSC) for relative size, and Side-Scatter measurements
(SSC) for intracellular refractive index were made using the
488 nm laser. eCitrine fluorescence was measured using the
488 nm (Blue) laser excitation and detected using a 505 nm
Long Pass optical filter, followed by 530/30 nm optical filter
with a bandwidth of 30 nm (530/30, or 515 nm-545 nm).
mCherry fluorescence was measured using a 561 nm (yel-
low-green) laser, for excitation and a 595 nm long-pass
optical filter, followed by 610/20 nm band-pass optical filter
with a bandwidth of 20 nm (or 600 nm-620 nm). PMT values
for each color channel were adjusted such that the mean of
a sample of BY4743 yeast was 100. 50000 events were
collected for each sample. Flow cytometry data was ana-
lyzed using a custom R script (gateFlowData.R, available on
github) whose core functionality is based on the Biocon-
ductor packages flowCore**, flowStats, and flowViz**. In
summary, for each sample, events that had values for red or
yellow fluorescence that were less that one had those values
set to one. Then, in order to select events that represented
normal cells, we used the curv2filter method to extract
events that had FSC and side-scatter SSC values within the
values of the region of highest local density of all events as
considered by their FSC and SSC values. For these events
the red fluorescence intensity was considered a measure of
mCherry protein expression and yellow fluorescence inten-
sity a measure of eCitrine protein expression.

Measuring eCitrine and mCherry mRNA Expression by
qRT-PCR

Overnight cultures of diploid yeast in YEPD were diluted
in YEPD so that their ODg,, was equal to 0.1 in a 20 mL
culture, and then grown at 30° C. with shaking at 250 rpm
until their ODg,, reached 0.4-0.6. 10 mL of culture was then
pelleted by centrifugation for 5 minutes at 3000xg and snap
frozen in liquid nitrogen. Total RNA was extracted from
pelleted yeast cultures according to the method of Ares*®.
Thereafter, 10 Cpg of this RNA was treated with Turbo
DNase I (ambion) according to the manufacturer’s instruc-
tions, then 1 pg DNase treated RNA was reverse transcribed
using anchored oligo dT and Protoscript I (NEB) according
to the manufacturer’s instructions. %50? of this reaction was
then subjected to gPCR using the DyNAmo HS SYBR
Green qPCR Kit (Thermo Scientific) on a CFX96 Touch
Real Time PCR Detection System (Biorad). For each reverse
transcription reaction, two qPCR reactions were performed:
one with primers specific to the mCherry ORF, and one with
primers specific to the eCitrine variant ORF in question.
gqPCR data was analyzed using custom R scripts whose core
functionality is based on the packages qpcR>**¢ & dpcR*°
(qper_functions.R, available on github). The signal from
each eCitrine variant ORF was normalized to that from the
mCherry ORF in the same sample, and then expressed as a
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fold-change compared to the median of these values for the
MIN (fastest predicted sequence) eCitrine variant.

Supplementary Note 1: Biological Signal and Bias

Experimental counts of ribosome footprints reflect a mix
of biological signal and technical biases. Our model with a 5
window of 30 nucleotides (codons —5 to +4) successfully
captures this same mix of signal and bias, without dis-
tinguishing the two. Predictions from that model are simply
predicting the data one would get from a ribosome profiling
experiment.

But recapitulating biased data is not the ultimate goal; we
would prefer to capture unbiased biological infor-mation.
‘We hypothesized that the anomalously high influences of the
ends of the 30 nt region represented enzyme biases. Our
model can quantify the contribution of specific end
sequences to higher or lower footprint count (again, without
a priori calling it signal or noise). We tested the enzyme
activity on different substrates and showed that our quanti-
tative predictions for those end sequences correlate very
well with actual enzyme preferences. That meant that much
of the influence of the end sequences is on footprint recov-
ery, not true ribosome distribution.

Going forward from there, to test the biological predic-
tions of our model, we excluded those end regions because
their contribution was mostly an artifact. A model based on
codons —3 to +2 will not recapitulate the experimental data
as well, because those data are influenced by technical
artifacts. But, we hypothesized that this reduced —3:2 model
would still capture biological information. We used this
reduced model to design sequences we expected to be
translated at different speeds, and we saw a surprisingly
good correlation between the fluorescent protein output and
the models prediction. From this, we concluded that our
model had learned substantial biological information in
codons —3 to +2, that this information was enough to predict
true ribosome distribution quite well, and that we had
avoided substantial bias in the ends of the footprints during
model training by removing them from our input features,
enough to make good biological predictions.

Supplementary Note 2: Feature Importance Codon Scores

s,.=codon score for codon x in position i

average increase in predicted scaled counts when codon
X is observed in position i
T,.=number of transcripts in test set
C,=length of CDS t in codons
t=index over transcripts
c=index over codons
k(t, C)=function that returns the codon at position (t, c)
v(t, c)=function that returns the sequence neighborhood
around position (t, c)

V,(t, c)=function that returns the sequence neighborhood
around position (t, c), replaces the codon at position i
with codon d
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Supplementary Note 3: Translation Rate Optimization
Algorithm
L=length of coding sequence in codons
A=amino acid sequence of protein
A[m: n]=slice of A from positions m to n, 1 indexed.
Negative indices count from end.
i=index over A site codons in coding sequence
c,,;""=min. index of a codon in the sequence neighbor-
hood, relative to A site (e.g., —7)
el '=max. index of a codon in the sequence neighbor-
hood, relative to A site (e.g., 5)
0(a)=function that returns the set of synonymous codons
for amino acid a &([a,,a,, . . . , a,])=0(a,)Xd(a)x . . .
x0(a,,)

F=prediction function of the neural network model

C

Algorithm 1 Calculate fastest codon sequence under a predictive modelt

forie {I...L}do
¢/"m = max(l, i + ¢,/ [>1
¢/" = min(i + ¢c,,/"*, L) [»2
Qi =&A[e : ¢ 3
for q € Q; do
Ti,q ~ f(q)ﬁ
end for
end for
forie {I...L}do
if ¢, = 1 then
for q € Q; do
P;, < None
Vig< Tig
end for
else if c,,;,’ > 1 then
for q € Q; do
Py argmin
Ped{Alch,,—11)xgl:=3]
Vig € Viip, + Ty
end for
end if
end for

VIi-11(p)

qr = argminVy ,
qe0Qr,

i=L;q,=q.ecds=q,
while ¢,,;,' > 1 do

i=1

q; < P, i

cds « q;[: 3] +cds
end while
return cds

1 Minimum codon idx in neighborhood around position i
[»2 Maximum codon idx in neighborhood around position i

[>3 Set of sequence neighborhoods
1To calculate slowest sequence, change argmins to argmax

If the sequence neighborhood is truncated because it runs outside of the coding sequence,
we input this part of the neighborhood to our model as all 0 values (i.e. no codons are
encoded as 1),

Average per gene correlations between ribosome footprint
counts (Weinberg et al. 2016) and predictions of these
counts. Lin V0-V7, performance of Riboshape (Liu and
Song, 2016), shown as average correlations per gene
between denoised ribosome footprint data and predictions of
that denoised data. Riboshape projects data into 8 subspaces
of a Debauchies-8 basis for wavelet analysis. V, is the
lowest resolution projection (most smoothed), and V is the
closest approximation of the raw data. Tunney, performance
of Iynos, shown as the average correlation per gene between
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true ribosome footprint data and predictions of that data. All
results are reported on 1711 yeast genes, taking an intersec-
tion between genes used in the ‘chxdata.mat’ file published
with riboshape, genes that passed filtering in our RUST
analysis, and genes in our yeast transcriptome, excluding the
Iynos training set.

SUPPLEMENTARY TABLE 1

Performance comparison with riboshape

Liu Liu Liu Liu Liu Liu Liu Liu
Vo Vi V, Vi Va Vs Ve \Z Tunney
039 048 0.51 050 0350 050 050 047 0.56

Average per gene correlations between ribosome footprint
counts (Weinberg et al. 2016) and predictions of these
counts. Liu VO-V7, performance of Riboshape (Liu and
Song, 2016), shown as average correlations per gene
between denoised ribosome footprint data and predictions of
that denoised data. Riboshape projects data into 8 subspaces
of a Debauchies-8 basis for wavelet analysis. V, is the
lowest resolution projection (most smoothed), and V, is the
closest approximation of the raw data. Tunney, performance
of Ixnos, shown as the average correlation per gene between
true ribosome footprint data and predictions of that data. All
results are reported on 1711 yeast genes, taking an intersec-
tion between genes used in the ‘chxdata.mat’ file published
with riboshape, genes that passed filtering in our RUST
analysis, and genes in our yeast transcriptome, excluding the
Iynos training set.

SUPPLEMENTARY TABLE 2

Oligos used in strain construction and
measuring mRNA abundance and ligation efficiency

Genotyping; upstream flank,
F primer; product 534 bp:
(SEQ ID

NO. 15)

TGCATAAACGCTGTTGGTGC

Genotyping; upstream flank,
R primer; product 534 bp:
ID NO.

(SEQ 16)

AGAGTCATCCGCTAGGTGGA

Genotyping; downstream flank,
F primer; product 552 bp:
ID NO.

(SEQ 17)

AGGTGGCAAGTGGTATTCCG

Genotyping; downstream flank,
R primer; product 552 bp:
ID NO.

(SEQ 18)

ACAGGTGTTGGCTTGGTGAA

Circularization dependent gPCR;
F primer; product 100 bp:
(SEQ ID

NO. 19)

CTCTTTCCCTACACGACGCTC

Circularization dependent gPCR;
R primer; product 100 bp:
NO.

(SEQ 20)

GTGACTGGAGTTCAGACGTGTG

Circularization independent gPCR;
F primer; product 62 bp:
ID NO.

(SEQ 21)

GTGACTGGAGTTCAGACGTGTG
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SUPPLEMENTARY TABLE 2-continued

Oligos used in strain construction and
measuring mRNA abundance and ligation efficiency

Circularization independent gPCR;
R primer; product 62 bp:
(SEQ ID NO. 22)

GATAACAGGGTAATGCGAACGA

Model seq: ATA:

(SEQ ID NO. 23)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Sp18/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAATAT

Model seq: TCC:

(SEQ ID NO. 24)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Spl8/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAAGGA

Model seq: CCA:

(SEQ ID NO. 25)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Sp18/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAATGG

Model seq: CAC:

(SEQ ID NO. 26)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Spl8/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAAGTG

Model seq: AGG:

(SEQ ID NO. 27)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Sp18/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAACCT

Model seq: TTG:

(SEQ ID NO. 28)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1iSpl8/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAACAA

Model seq: CGT:

(SEQ ID NO. 29)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAARAGAG/1Sp18/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAAACG

Model seq: GAC:

(SEQ ID NO. 30)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Spl8/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAAGTC

Model seq: GGG:

(SEQ ID NO. 31)
/5P/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/1Sp18/GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTACCCTGTT
ATCCCTAACCC

mCherry gPCR F:

(SEQ ID NO. 32)
CATGGTCTTCTTCTGCATTACG
mCherry gPCR R:

(SEQ ID NO. 33)
GACTACTTGAAGCTGTCCTTC
eCitrine UTR R:

(SEQ ID NO. 34)
CGCTTATTTAGAAGTGGCG
eCitrine MIN F:

(SEQ ID NO. 35)

GCCCTCTCCAAAGATCC
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SUPPLEMENTARY TABLE 2-continued

Oligos used in strain construction and
measuring mRNA abundance and ligation efficiency

eCitrine 000 F:

(SEQ ID NO. 36)
GCTCTATCTAAAGACCCAAACG
eCitrine 333 F:

(SEQ ID NO. 37)
GCATTATCGAAGGACCCTAA
eCitrine 666 F:

(SEQ ID NO. 38)
GCTCTATCTAAGGACCCCAA
eCitrine 999 F:

(SEQ ID NO. 39)
GCGTTAAGCAAAGACCC
eCitrine MAX F:

(SEQ ID NO. 40)
GCACTGAGCAAGGACCC
eCitrine PAR F:

(SEQ ID NO. 41)
GCCTTATCCAAAGATCCAAA
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SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 41
<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 1

LENGTH: 42

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

<400> SEQUENCE: 1

agcatttett gccaagaaag agagetgect ccatcagage ct

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 2

LENGTH: 36

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

<400> SEQUENCE: 2

gctaacttga tggeceggtca ctgggttget atetec

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 3

LENGTH: 36

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE :

<400> SEQUENCE: 3

cacttgaaga gaaactttac gaataacact acggaa

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 4

LENGTH: 61

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE :

<400> SEQUENCE: 4

OTHER INFORMATION: DEPICTED SEQUENCE OF NEURAL NETWORK STRUCTURE

42

OTHER INFORMATION: DEPICTED SEQUENCE OF NEURAL NETWORK MODEL

36

OTHER INFORMATION: DEPICTED SEQUENCE OF NEURAL NETWORK STRUCTURE

36

OTHER INFORMATION: DEPICTED SEQUENCE OF NEURAL NETWORK STRUCTURE
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-continued

tgcatgctge atctgcatge atgcatgcat geatgcatge atgecatgcat gcatgeatge 60

a 61

<210> SEQ ID NO 5

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Aequorea victoria

<400> SEQUENCE: 5

Ala Thr Gly Ala Gly Thr Ala Ala Ala Gly Gly Ala Gly Ala Ala
1 5 10 15

<210> SEQ ID NO 6
<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: AMINO ACID SEQUENCE

<400> SEQUENCE: 6

Ala Thr Gly Thr Cys Cys Ala Ala Ala Gly Gly Thr Gly Ala Ala
1 5 10 15

<210> SEQ ID NO 7

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: AMINO ACID SEQUENCE

<400> SEQUENCE: 7

Ala Thr Gly Thr Cys Ala Ala Ala Ala Gly Gly Cys Gly Ala Gly
1 5 10 15

<210> SEQ ID NO 8

<211> LENGTH: 37

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: n is random nucleotides
<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(5)

<223> OTHER INFORMATION: n is a, ¢, g, or t

<400> SEQUENCE: 8

nnnnnagcta agatcggaag agcacacgtc tgaaddc 37

<210> SEQ ID NO 9

<211> LENGTH: 55

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: MODIFIED RT PRIMER

<400> SEQUENCE: 9

agatcggaag agcgtegtgt agggaaagag gtgactggag ttcagacgtyg tgete 55

<210> SEQ ID NO 10

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: LINKER SEQUENCE

<400> SEQUENCE: 10
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-continued

32

tcgtatgeeg tettetgett g

<210>
<211>
<212>
<213>
<220>
<223>
<220>
<221>
<222>
<223>

<400>

SEQ ID NO 11

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: LINKER SEQUENCE
FEATURE:

NAME/KEY: misc_feature

LOCATION: (1)..(5)

OTHER INFORMATION: n is a, ¢, g, or t

SEQUENCE: 11

nnnnnagatc ggaagagcac acgtctgaac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 12

LENGTH: 17

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: LINKER SEQUENCE

SEQUENCE: 12

ctgtaggcac catcaat

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 13

LENGTH: 17

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: LINKER SEQUENCE

SEQUENCE: 13

ctgtaggcac catcaat

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 14

LENGTH: 98

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: OLIGONUCLEOTIDE STRUCTURE

SEQUENCE: 14

agatcggaag agegtegtgt agggaaagag sgtgactgga gttecagacgt gtgetettee

gatcacagtc atcgttegea ttaccctgtt atccctaa

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 15

LENGTH: 20

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: UPSTREAM FLANK,F PRIMER

SEQUENCE: 15

tgcataaacg ctgttggtge

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 16

LENGTH: 20

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: UPSTREAM FLANK,R PRIMER

SEQUENCE: 16

21

30

17

17

60

98

20
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-continued

34

agagtcatcc gctaggtgga 20

<210> SEQ ID NO 17

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: DOWNSTREAM FLANK,F PRIMER

<400> SEQUENCE: 17

aggtggcaag tggtattccg 20

<210> SEQ ID NO 18

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: DOWNSTREAM FLANK, R PRIMER

<400> SEQUENCE: 18

acaggtgttg gcttggtgaa 20

<210> SEQ ID NO 19

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CIRCULARIZATION DEPENDENT gPCR,R PRIMER

<400> SEQUENCE: 19

ctctttecct acacgacget ¢ 21

<210> SEQ ID NO 20

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CIRCULARIZATION DEPENDENT gPCR,R PRIMER

<400> SEQUENCE: 20

gtgactggag ttcagacgtg tg 22

<210> SEQ ID NO 21

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CIRCULARIZATION INDEPENDENT gPCR,F PRIMER

<400> SEQUENCE: 21

gtgactggag ttcagacgtg tg 22

<210> SEQ ID NO 22

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CIRCULARIZATION INDEPENDENT gPCR,R PRIMER

<400> SEQUENCE: 22
gataacaggg taatgcgaac ga 22
<210> SEQ ID NO 23
<211> LENGTH: 101

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
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-continued

36

<220>
<223>

<400>

FEATURE:
OTHER INFORMATION: MODEL SEQUENCE ATA

SEQUENCE: 23

agatcggaag agcgtegtgt agggaaagag sgtgactgga

gatcacagtc atcgttegea ttaccctgtt atccctaata

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 24

LENGTH: 100

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: MODEL SEQUENCE TCC

SEQUENCE: 24

agatcggaag agcgtcegtgt agggaaagag gtgactggag

atcacagtca tcgttegeat taccctgtta tecctaagga

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 25

LENGTH: 100

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: MODEL SEQUENCE CCA

SEQUENCE: 25

agatcggaag agegtegtgt agggaaagag gtgactggag

atcacagtca tcgttcgcat taccctgtta tccctaatgg

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 26

LENGTH: 100

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: MODEL SEQUENCE CAC

SEQUENCE: 26

agatcggaag agcgtcegtgt agggaaagag gtgactggag

atcacagtca tcgttegeat taccctgtta tecctaagty

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 27

LENGTH: 101

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: MODEL SEQUENCE AGG

SEQUENCE: 27

gttcagacgt gtgctcttee

t

ttcagacgtg tgctcttceg

ttcagacgtyg tgctettecy

ttcagacgtg tgctcttceg

agatcggaag agcegtegtgt agggaaagag sgtgactgga gttcagacgt gtgetettee

gatcacagtc atcgttegea ttaccctgtt atccctaacce t

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 28

LENGTH: 100

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: MODEL SEQUENCE TTG

SEQUENCE: 28

agatcggaag agcegtegtgt agggaaagag gtgactggag ttcagacgtyg tgctettecyg

atcacagtca tcgttcgcat taccctgtta tccctaacaa

60

101

60

100

60

100

60

100

60

101

60

100
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-continued

38

<210> SEQ ID NO 29

<211> LENGTH: 101

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: MODEL SEQUENCE CGT

<400> SEQUENCE: 29
agatcggaag agcgtcgtgt agggaaagag sgtgactgga

gatcacagtc atcgttegea ttaccctgtt atccctaaac

<210> SEQ ID NO 30

<211> LENGTH: 100

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: MODEL SEQUENCE GAC

<400> SEQUENCE: 30
agatcggaag agcgtcegtgt agggaaagag gtgactggag

atcacagtca tcgttegeat taccctgtta tecctaagte

<210> SEQ ID NO 31

<211> LENGTH: 100

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: MODEL SEQUENCE GGG

<400> SEQUENCE: 31

agatcggaag agegtegtgt agggaaagag gtgactggag

atcacagtca tcgttcgcat taccctgtta tcectaacce

<210> SEQ ID NO 32

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: MCHERRY gPCR F

<400> SEQUENCE: 32

catggtcttc ttctgcatta cg

<210> SEQ ID NO 33

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: MCHERRY gPCR R

<400> SEQUENCE: 33

gactacttga agctgtectt c

<210> SEQ ID NO 34

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine UTR R

<400> SEQUENCE: 34

cgettattta gaagtggey

gttcagacgt gtgctcttece

g

ttcagacgtg tgctctteceg

ttcagacgtyg tgctctteeg

60

101

60

100

60

100

22

21

19
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-continued

40

<210> SEQ ID NO 35

<211> LENGTH: 17

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine MIN F

<400> SEQUENCE: 35

gcceteteca aagatece

<210> SEQ ID NO 36

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine 000 F

<400> SEQUENCE: 36

gctectatcta aagacccaaa cg

<210> SEQ ID NO 37

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine 333 F

<400> SEQUENCE: 37

gcattatcga aggaccctaa

<210> SEQ ID NO 38

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine 666 F

<400> SEQUENCE: 38

gctetatceta aggaccccaa

<210> SEQ ID NO 39

<211> LENGTH: 17

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine 999 F

<400> SEQUENCE: 39

gegttaagea aagaccce

<210> SEQ ID NO 40

<211> LENGTH: 17

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine MAX F

<400> SEQUENCE: 40

gcactgagca aggaccc

<210> SEQ ID NO 41

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: eCitrine PAR F

17

22

20

20

17

17
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42

-continued

<400> SEQUENCE: 41

gecttatcca aagatccaaa

20

The invention claimed is:

1. A method for tailoring gene transcript sequences for

protein expression, comprising steps:

a) measuring ribosome dynamics in an organism or cell
type of interest to obtain ribosome profiling data;

b) training a statistical model of the relationship between
DNA sequence and translation speed on the ribosome
profiling data; and

¢) using the trained model to design a DNA sequence
encoding and tailored for expression of a protein of
interest,

wherein step (b) comprises training the model to learn
sequence preferences for translation by using counts of
fragments at each codon position to learn the cell type
or organism’s sequence preferences for fast translation,
by:

counting how many ribosomes are seen at each codon
position in each gene transcript, normalized by the
average number of ribosomes per position in that gene
transcript;

using a machine learning protocol to learn the model for
the position-to-normalized count relationship of the
genome, wherein a 30-40 nucleotide window is
encoded around each codon feature; and

training a neural network to predict normalized counts as
a function of these features, providing the model that
can take as input any arbitrary gene transcript sequence
and predict how ribosomes will slow down or speed up
on that sequence.

2. The method of claim 1 wherein step (b) comprises:

predicting counts at the A site codon, wherein a sequence
neighborhood spanning from 5 codons upstream of the
A site (codon -5) to 4 codons downstream of the A site
(codon+4) is used as the predictive region;

20

25

30

35

dividing the neighborhood into codons, wherein each
codon and nucleotide is converted to a binary vector via
one-hot encoding for input into regression models;

computing RNA structure score on three 30 nt sliding
structure windows that span the width of a typical 28 nt
footprint, wherein the windows start 17, 16, and 15
nucleotides before the start of the A site; and

concatenating the vector as the input to a fully connected
feed-forward neural network model.

3. The method of claim 1 wherein step (c) comprises using
the model to design an optimized codon sequence to encode
a given protein sequence by using a dynamic programming
algorithm to determine an optimal codon sequence in the set
of synonymous sequences that code for the protein.

4. The method of claim 2 wherein the model also accepts
RNA folding energies and allows a user to define window
sizes and positions to score RNA structure and include as
inputs into the regression models.

5. The method of claim 2 wherein the model includes
codons -5 to +4 and nucleotides —-15 to +14, as well as
folding energies from three 30-nt windows starting at
nucleotides -17, —-16, and -15.

6. The method of claim 1 further comprising synthesizing
a DNA molecule of the DNA sequence.

7. The method of claim 2 further comprising synthesizing
a DNA molecule of the DNA sequence.

8. The method of claim 3 further comprising synthesizing
a DNA molecule of the DNA sequence.

9. The method of claim 4 further comprising synthesizing
a DNA molecule of the DNA sequence.

10. The method of claim 5 further comprising synthesiz-
ing a DNA molecule of the DNA sequence.

* * * * *



